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Weighted-ensemble simulated annealing: Faster optimization on hierarchical energy surfaces
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Department of Chemistry and Biochemistry, Department of Pharmacology, University of California, San Diego,

La Jolla, California 92093-0365
~Received 31 October 1996!

A method, weighted-ensemble annealing, is proposed for finding the global minima of complicated func-
tions, such as those found in biological problems. This method performs simulated annealing using multiple
system copies; it automatically adjusts the distribution of copies and the allocation of computer resources as the
cooling proceeds. This readjustment procedure is designed to take advantage of the hierarchical structure of the
energy landscape of biomolecules and other systems. This method is applied to a fractal-like function with
energy barriers of many sizes and a large entropy barrier. It is shown that using an optimal number of system
copies results in a success rate for finding the global minimum, which is an order of magnitude higher than the
success rate from traditional single-copy annealing, using the same total number of function evaluations.
@S1063-651X~97!06804-9#

PACS number~s!: 02.70.Lq, 02.60.Pn, 36.20.Hb, 87.15.By
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I. INTRODUCTION

One of the most important general computational ch
lenges is to find the global minimum of a complicated m
tidimensional function. Many problems in biochemistry a
equivalent to finding a global potential energy minimu
such as protein folding and ligand binding. Such proble
also arise in materials science and other areas. This is a
ficult problem, because the potential energy surface cont
many local minima separated by high barriers, which of
defeat minimization algorithms. In describing the followin
algorithms, it is helpful to think of the domain of the func
tion variables as a multidimensionalconfiguration space, and
each set of variable values as asystem copy. The process of
changing the variable values, or moving a system co
through configuration space, is called amove.

One approach to the global minimum problem issimu-
lated annealing~SA! @1#, in which a temperature paramet
is defined, set to a high value, and gradually lowered a
single system copy is subjected to moves. The move se
defined so that large energy barriers can be surmounte
high temperatures, while at low temperatures, the sys
settles in one minimum. The more slowly the temperat
decrease, orcooling, proceeds, the more likely is the chan
of finding the global minimum. SA has been successfu
used in problems of combinatorial optimization, such as
‘‘traveling salesman’’ problem and the optimal layout
electronic chips@2#.

Unfortunately, SA is not very effective for models of pro
tein folding @3,4#. The reason is that the system often sett
into a local minimum that is not the global minimum, and
is then unable to escape. Thus, extremely long simulat
with extremely slow cooling would be necessary to find t
global potential energy minimum with a high probabilit
Straub@5# presents a simple argument showing that the
quired time will scale exponentially with the difference b
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tween these two quantities: the largest barrier height betw
the global minimum and another minimum, and the small
energy difference between the global minimum and anot
minimum. This difference is large in proteins.

Fortunately, the potential energy landscape of proteins
another feature that opens the possibility to other minimi
tion algorithms. There is evidence, both theoretical@6# and
experimental@7#, that the energy landscape has ahierarchi-
cal form. Such functions have a component consisting
large energy variations and large length scales, along wi
hierarchy of other components with smaller length scales
correspondingly smaller energy variations. In addition,
global minimum appears to sit inside a nested set of bas
Each basin contains the global minimum of an energy fu
tion that would result from subtracting all components with
length scale smaller than a given value~in other words,
smoothing the function!. So, the most promising approach
to locate the outermost basin on the coarsest scale, and
cessively locate the inner basins surrounding the global m
mum. Several schemes have been used that smooth th
ergy function @8,9#, as well as those which ‘‘blur’’ the
system copy@10,11#. The effectiveness of these methods f
finding the global minimum in peptides@12–14# and simple
models of proteins demonstrates the effectiveness of
strategy.

In this paper, we describe a scheme, weighted-ensem
annealing~WEA!, that uses multiple copies of the system
which are moved independently of each other. As the te
peratureT is lowered, some of the copies become trapped
higher-energy minima; these are deleted, and the copies
appear to proceed towards promising regions of configu
tion space are duplicated, focusing the simulation on the c
rent basin surrounding the global minimum. The total nu
ber of copies remains constant. Other SA schemes w
multiple copies have been used on combinatorial optimi
tion problems; the main goal of these schemes has been
adaptation of simulated annealing to parallel computat
@15–17#, or the gathering of auxiliary information about th
energy surface itself@18#.
4822 © 1997 The American Physical Society
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II. METHOD

In the weight-ensemble annealing method, each copy
the system is given a statistical weight. This is similar to
treatment of multiple copies in the weighted-ensem
Brownian dynamics of Huber and Kim@19#. As the cooling
progresses, the weights are adjusted and used as a crit
for deleting and duplicating copies.

At the beginning of the annealing, theN system copies
are scattered randomly and uniformly throughout configu
tion space, and each copy is given a weight proportiona
its Boltzmann factor exp(2V/kT). The total weight of the
ensemble is then normalized toN. This procedure provides
an approximation to a Boltzmann distribution by the e
semble of copies.

The annealing process comprises the following ste
First, the copies are moved, with moves being accepte
rejected as above. Next, the temperature is lowered a s
amount, depending on the annealing schedule. Finally,
weights of each copy are adjusted according to the follow
formula:

pi←piexpFVi S 1Tn2 1

Tn11
D G , ~1!

wherepi is the weight of copyi , its energy isVi , the tem-
perature at the current stepn is Tn , andTn11 is the new
temperature. The weights of the ensemble are then nor
ized to N. The important effect is that the weights of th
low-energy copies increase, while the copies in high
energy regions ‘‘fade away.’’ In the actual implementatio
the logarithms of the weights, rather than the weights the
selves, are stored and manipulated in order to avoid roun
errors.

Equation~1! is used for the following reason. Let us d
vide up the configuration space into separatestates. For dis-
crete models, where the configuration variables take disc
values, this is trivial. For continuous models, the configu
tion space can be subdivided into hypercubes that are s
enough that the energy is almost constant within. Supp
thatN is very large so that each state is occupied by a v
large number of copies. Suppose also that the copies
distributed according to a Boltzmann distribution atTn .
Then, the total copy weight in statei is proportional to
Viexp(2Vi /Tn), whereVi is the volume of the state. If the
temperature is dropped toTn11, then the weights in statei
are multiplied by the factor in Eq.~1!. The total weight in
i is now Viexp(2Vi /Tn11), which satisfies the Boltzman
distribution atTn11. Heuristically, having the distribution b
as close as possible to a Boltzmann distribution at the cur
temperature is desirable for an annealing algorithm.

As the annealing proceeds and the weights are adjus
eventually some of the copies become trapped in hi
energy regions and their weights become very small
makes little sense to use computer resources in moving th
so a method is needed for removing them, without disrupt
the Boltzmann distribution. As the same time, the weights
other copies become larger, and it makes sense to split t
copies, in order to keep the numberN constant and to focus
the search for the minimum. At regular intervals, the weig
are sorted. If the largest weight is greater than two times
of
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smallest weight, the copy with the largest weight is dup
cated, and the copies with the two smallest weights are c
bined. The weights are sorted again, and the procedur
repeated until the largest weight is less than twice the sm
est. This is similar in spirit to genetic algorithms, where t
‘‘unfit’’ copies are eliminated and the ‘‘fit’’ copies replicate
@20–22#.

When a copy is split, a duplicate is created with the sa
position in configuration space, but the parent and duplic
now each have half of the original parent’s weight. Wh
two copiesi and j are combined, one of the copies is delete
and its weight is added to the weight of the other copy.
choose which copy to delete, a random number betwee
and 1 is generated. If it is less thanpi /(pi1pj ), then copy
j is deleted; otherwise, copyi is deleted. The surviving copy
is left with weight pi1pj . As shown in Appendix A of
Huber and Kim@19#, this procedure introduces no bias an
preserves the Boltzmann distribution.

III. FRACTAL FUNCTION

In order to test the WEA algorithm, we construct a mu
tidimensional function that has high energy and entropy b
riers, yet has a hierarchical structure that one might find i
fractal or the energy landscape of a protein. There are f
variablesx1 throughx4, and the potential energy takes th
form V(r ), wherer5Ax121x2

21x3
21x4

2 is the Euclidean dis-
tance from the origin in the four-dimensional configurati
space. The functionV(r ) is shown in Fig. 1. It is constructed
by starting with a simple motif and by adding smaller ve
sions of itself to the original. This is repeated to create fo
self-similar levels. The variables are constrained to lie
tween 2256 and 256; the energy is assumed infinite
r.256. The energy barriers are evident from the pictu
The entropy barrier arises from the fact that the total volu
of the accessible configuration space, a four-sphere wi
radius of 256, is 0.5p23256452.1231010, while the vol-
ume of the space representing the global minimum, a fo
sphere with a radius of 1, is only 0.5p254.93. In the follow-
ing series of annealing runs, the moves consisted
displacements drawn from a spherically symmetric Gauss
distribution with a variance of 16.0, and were accepted

FIG. 1. Fractal-like function.
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TABLE I. Frequency of success in finding the global minimum during 20 runs for each number of c
and total number of moves.

No. of copies
8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

No. of moves

1 048 576 20 20 20 20 20 20 18 16 13 8 7 5 4
524 288 20 20 20 19 20 19 15 16 14 9 5 3 2
262 144 19 19 18 17 19 15 15 11 2 8 8 0 1
131 072 12 13 15 16 15 10 13 6 7 4 0 2 0
65 536 2 8 8 9 6 4 8 5 4 0 2 1 1 0
32 768 0 0 1 2 4 8 7 2 0 2 2 0 0 0
16 384 0 1 0 2 2 2 2 1 1 1 0 0 0 0
8 192 0 1 0 0 0 0 1 0 0 1 0 0 0 0
4 096 0 0 0 0 0 0 1 0 1 0 0 0 0 0
2 048 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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rejected according to the Metropolis Monte Carlo algorith
@23#.

For this system, a series of annealing runs were p
formed, varying both the number of copies and the to
number of moves for each run. The starting temperatur
2/k and the final temperature is 0.005/k, wherek is Boltz-
mann’s constant. AtkT50.005, a system copy drawn from
thermal equilibrium distribution has a chance greater th
90% of being at the global minimumV50. This presents a
severe challenge for an annealing algorithm. The sys
must be cooled to a low temperature, but the low tempera
makes it easy for the system to be trapped in other mini
An exponential cooling schedule was used, using the follo
ing updating formula forT:

Tn115aTn , ~2!

where the constanta is chosen so that the finalT is reached
in the prescribed number of moves.

A total number of 2800 runs was performed. The num
of copies was varied from 1 to 8192, increasing by a fac
of 2 each time, and the total number of moves was var
from 2048 to 1 048 576, increasing by a factor of 2 ea
time. The total number of moves takes into account the nu
ber of copies, so a run with two copies is cooled twice
quickly as a run with one copy, for the same number
moves. For each pair of copy numbers and move numb
20 runs were performed; a run was declared successful
least one copy reached the global minimum at least o
during the annealing. For the cases where the numbe
copies exceeded the total number of moves, all runs w
declared unsuccessful. We use the total number of move
a rough measure of computer time required; for more co
plex systems, most of the computer time will be consume
computing the moves.

IV. RESULTS

The success rates from the fractal function runs are s
marized in Table I. Note that each horizontal row of numb
required the same total number of moves for each entry.
apparent that an order-of-magnitude improvement in the s
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cess rate for finding the global minimum is possible with
good choice of the number of copies. It appears that
optimal choice for the number of copies depends on h
many moves one is will to take; the higher the number
moves, the more copies should be used. This, perhaps is
to a trade-off between local searching, which is emphasi
by fewer copies, and global searching, which is emphasi
by more copies. Of course, the optimal number for a giv
model cannot yet be known ahead of time, but future
search might point the way towards some guidelines.

The success of the WEA method on this easily evalua
yet challenging function indicates some promise for biolo
cal problems. Other models currently being studied are
lattice model of protein folding previously studied by Soc
and Onuchic@24#, and the tetra-alanine peptide in a vacuu
by means of molecular dynamics@25#.

This method also has promise for parallel computin
where each processor could handle a system copy. Com
nication between processors would be limited to compar
statistical weights~frequent communication, but very little
data! and copy deletions and duplications~much data, but
infrequent communication!. Thus, the WEA method migh
run very efficiently on a parallel computer, because the co
munication bottlenecks might be small@26#.

Other advances in global optimization can be used un
the framework of WEA. There has been much work in t
area of more efficient move sets that seek to avoid repeat
searching the same region of configuration space, usuall
surmounting or circumventing energy barriers@27–29# or by
‘‘remembering’’ past conformations@30,31#. Any advances
made in this area are directly complementary to the W
method, because any move set can be used in WEA. A
some of the methods mentioned above that blur the pote
energy surface or the system copy itself could be used
facilitate configuration space exploration.
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